\(\int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [723]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 48, antiderivative size = 61 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-2*(e*x+d)^(1/2)*(g*x+f)^(1/2)/(-a*e*g+c*d*f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {874} \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)} \]

[In]

Int[(d + e*x)^(3/2)/(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*Sqrt[f + g*x])/((c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 874

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
 x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d
*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && EqQ[m - n - 2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.82 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{(c d f-a e g) \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^(3/2)/(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*Sqrt[f + g*x])/((c*d*f - a*e*g)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.90

method result size
default \(\frac {2 \sqrt {g x +f}\, \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{\sqrt {e x +d}\, \left (c d x +a e \right ) \left (a e g -c d f \right )}\) \(55\)
gosper \(\frac {2 \sqrt {g x +f}\, \left (c d x +a e \right ) \left (e x +d \right )^{\frac {3}{2}}}{\left (a e g -c d f \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}\) \(63\)

[In]

int((e*x+d)^(3/2)/(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/(e*x+d)^(1/2)*(g*x+f)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/(c*d*x+a*e)/(a*e*g-c*d*f)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (55) = 110\).

Time = 0.29 (sec) , antiderivative size = 125, normalized size of antiderivative = 2.05 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f}}{a c d^{2} e f - a^{2} d e^{2} g + {\left (c^{2} d^{2} e f - a c d e^{2} g\right )} x^{2} + {\left ({\left (c^{2} d^{3} + a c d e^{2}\right )} f - {\left (a c d^{2} e + a^{2} e^{3}\right )} g\right )} x} \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)/(a*c*d^2*e*f - a^2*d*e^2*g + (c^2*d
^2*e*f - a*c*d*e^2*g)*x^2 + ((c^2*d^3 + a*c*d*e^2)*f - (a*c*d^2*e + a^2*e^3)*g)*x)

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \sqrt {f + g x}}\, dx \]

[In]

integrate((e*x+d)**(3/2)/(g*x+f)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)**(3/2)/(((d + e*x)*(a*e + c*d*x))**(3/2)*sqrt(f + g*x)), x)

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} \sqrt {g x + f}} \,d x } \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*sqrt(g*x + f)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 218 vs. \(2 (55) = 110\).

Time = 0.32 (sec) , antiderivative size = 218, normalized size of antiderivative = 3.57 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \, \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} e g^{2}}{{\left (c d e^{2} f g - a e^{3} g^{2} - {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g\right )} {\left (c d e f {\left | g \right |} - a e^{2} g {\left | g \right |}\right )}} - \frac {2 \, \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g}}{c^{2} d^{3} e f {\left | g \right |} - a c d e^{3} f {\left | g \right |} - a c d^{2} e^{2} g {\left | g \right |} + a^{2} e^{4} g {\left | g \right |}} \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

2*sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*e
*g^2/((c*d*e^2*f*g - a*e^3*g^2 - (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)*(c*d*e*f*abs(g) - a*e^2*g*abs(g))) - 2
*sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f - d*e*g)/(c^2*d^3*e*f*abs(g) - a*c*d*e^3*f*abs(g) - a*c*d^2*e^2*g*a
bs(g) + a^2*e^4*g*abs(g))

Mupad [B] (verification not implemented)

Time = 13.25 (sec) , antiderivative size = 147, normalized size of antiderivative = 2.41 \[ \int \frac {(d+e x)^{3/2}}{\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {\left (\frac {2\,f\,\sqrt {d+e\,x}}{c\,d\,e\,\left (a\,e\,g-c\,d\,f\right )}+\frac {2\,g\,x\,\sqrt {d+e\,x}}{c\,d\,e\,\left (a\,e\,g-c\,d\,f\right )}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^2\,\sqrt {f+g\,x}+\frac {a\,\sqrt {f+g\,x}}{c}+\frac {x\,\sqrt {f+g\,x}\,\left (c\,d^2+a\,e^2\right )}{c\,d\,e}} \]

[In]

int((d + e*x)^(3/2)/((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

(((2*f*(d + e*x)^(1/2))/(c*d*e*(a*e*g - c*d*f)) + (2*g*x*(d + e*x)^(1/2))/(c*d*e*(a*e*g - c*d*f)))*(x*(a*e^2 +
 c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(x^2*(f + g*x)^(1/2) + (a*(f + g*x)^(1/2))/c + (x*(f + g*x)^(1/2)*(a*e^2 +
 c*d^2))/(c*d*e))